

Game Changing Antenna Technologies Enabling New Class of Earth Science and Interplanetary Mission

Antenna Technologies

Nacer Chahat.

Nacer.e.Chahat@jpl.nasa.gov NASA Jet Propulsion Laboratory / California Institute of Technology

American Geophysical Union Fall Metting – Washington D.C. – 10-14 Dec 2018

Pre-Decisional Information – For Planning and Discussion Purposes Only © 2018 California Institute of Technology. Government sponsorship acknowledged.

Mars Cube One: MarCO

- **Challenge**: bent pipe communication at 1.04AU from Earth i.e. receive and transmit at the same data rate (8kbps)
- Drastic requirements:
 - Stowage volume: 12.5mm × 210mm × 345mm
 - Gain of at least 28dBic (required aperture: 335mm × 587mm)

Mars Cube One: MarCO

- Demonstrated in Space:
 - Successful deployment of two antennas in space
 - Quick gain assessment has shown that the gain is within ±0.4dB.
 - Pattern successfully verified in space
- An historical deployment witnessed by a picture

RainCube: Radar in a CubeSat

- 0.5-m reflector Ka-band antenna
- Polarization: V-polarization
- Gain: 42.6 dBi
- Efficiency: 56%
- HPBW: 0.57° → footprint = 8.0km
- Key RF innovation:
 - Compensation of the non parabolic shape
 - Telescoping waveguide
 - 40 opening per inch (OPI) mesh reflector
 - Capability of modeling accurately the Ka-band antenna including the shape distortion and OPI

N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

RainCube: Radar in a CubeSat

Antenna description:

N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

RainCube: Radar in a CubeSat

Successful demonstration in Space:

OMERA: One Meter ReflectArray

- 1-m reflector Ka-band antenna (98.6cm x 82.1cm)
- Polarization: V-polarization
- Gain: 48.0 dBi
- Efficiency: 47%
- HPBW: **0.28**° → **footprint** = **3.9km**

Benefits:

- Smaller footprint for more powerful radar (2 times smaller compared to Raincube)
- 8x higher data rates (64kbps from Mars at 1AU)

Patent filed: "One Meter Deployable Reflectarray Antenna for Earth Science Radars or Telecommunication Systems".

Mesh reflector: Enabling higher data rates for CubeSats

deployable mesh reflector addressing clear New telecommunication need for Small Sat / CubeSats for higher data rates

Covers both X-band and Ka-band (very unlikely to need both at the same time so we are offering the 3 options: X-band only, Ka-band only, X/Ka-band)

X-band only: 36.1dBic / 72% efficiency / 64kbps at 1AU

☐ Ka-band only: 48.4dBic / 62% efficiency / 128kbps at 1AU

Metasurface antenna: the future is flat

Flat metasurface antenna for telecommunication at Ka-band

Polarization: RHCP

Gain: 26dBi

• Efficiency: 40%

Key RF innovation:

- o Integrated feed on flat antenna
- All metal (no dielectric needed)
- o 3D printed antenna
- Developed in-house s/w (no commercially available solution)

Advantages:

- Could simplify the deployment complexity of large structure
- RF performance remains stable over thermal
- Can sustain high radiation levels
- Any radiation pattern can be obtained from a flat surface
- Perfect candidate for platforms with limited stowage volume

D. González-Ovejero, N. Chahat, R. Sauleau, G. Chattopadhyay, S. Maci and M. Ettorre, "Additive Manufactured Metal-Only Modulated Metasurface Antennas," in *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 11, pp. 6106-6114, Nov. 2018.

Metasurface antenna: Beam Steering in Progress

- Flat metasurface antenna at W-band funded by an ACT.
- Gain: 31dBi
- Key RF innovation:
 - \circ Pill-box design for steering in φ -direction
 - O GaAs Schottky diodes on metasurface steering in θ-direction
- Advantages:
 - > Flat antenna technology with steering capabilities

Metasurface antenna: Beam Steering in Progress

Fabrication:

 Silicon (Si) / Gallium Arsenide (GaAs) semiconductor fabrication technique.

CMOS technology:

 CMOS chip (JPL design) will be used to control the state of the diodes (on / off) to provide full 3D beam steering

→ low cost antenna technology with potential commercial applications

Game Changing Antenna Technologies Enabling New Class of Earth Science and Interplanetary Mission

Nacer Chahat, 337 Technical Section Staff

Team members: David Gonzalez, Okan Yurduseven, Goutam Chattopadhyay, Choonsup Lee, Tom Cwik, Jonathan Sauder, Manan Arya, Ellen Thiel, Polly Estabrook, Brant Cook, Richard Hodges, Mark Tomson.

NASA Jet Propulsion Laboratory / California Institute of Technology

Questions?

American Geophysical Union Fall Metting – Washington D.C. – 10-14 Dec 2018

Pre-Decisional Information – For Planning and Discussion Purposes Only